(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 9.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 7494, 199] NotebookOptionsPosition[ 6850, 172] NotebookOutlinePosition[ 7408, 194] CellTagsIndexPosition[ 7365, 191] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Clear", "[", "f", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", RowBox[{"\[Infinity]", "/;", RowBox[{"x", "<", "0"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", RowBox[{"3", "/;", RowBox[{"0", "<", "x", "<", "6"}]}]}], "\n", RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", RowBox[{ FractionBox["1", "3"], "/;", RowBox[{"6", "<", "x", "<", "24"}]}]}], "\n", RowBox[{ RowBox[{"f", "[", "x_", "]"}], ":=", RowBox[{"0", "/;", RowBox[{"24", "<", "x", "<", "\[Infinity]"}]}]}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"f", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "5"}], ",", "30"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.7179524081723785`*^9, 3.717952408754057*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxF0n1Q0wUYB/AfCHPHm/IypovGixuxAGExMMXJLA50oIc4qJO0MYTU5CXl RW6mhBQKG5y8ODMxRscFjLtAJ3S0AI9pG5CixGZJjAknQego52TdaJWXz/O9 e+65z3/fe+4JFOWnZjsSBJH37/y3B490zTtrrduIFyHzvFT0Gx+RKuJemufZ +wV7qBEcK8oPbbzRDD5GkT2SftIJFhw0pAwFKMFV1NVuqukBsDBblrVv7CY4 SfJ+LUszBn6U/XSR2aYD10jcBWs4RjArR97t6jMHvknv//ix0x/goipF0MRp C7g38gQnlO3Ae+mdG830d74ngc889JqpC3cDxyddu+ft4glOfXJOPz7sDR49 Xb5+eAcFnOApzhi85Qtek1k/f4pBBd/vUpRwy9Gq+739ft1oOaF2thnQl1wq 9dd+Rzf48Ns/fI6W0t3FG1at46W9yETcZyFjyQ880Ce2pi/xg9FHUibr+7ho m8mta5MVLa3ljiqV68ExUUW6w16vgA26zml6gR+YeiWm8HqOPzhc1jMhpASC t/sbIlcagsB2QUF5kzsD/JZJ37p8lIl9taPkhflgcBT5IvfCrhDwRfPIoYQO FngpQDouYYSCb3cz1tZ8Ggb+snynhOm0EUxz0P89KI4Aux9rkrvmRoIrV12Y cQhlg+N/KK1Jm0TrjOc5oVVvgDMvF/w1khAFjji3hTVsQVsoIyX11zlgYiIh ou+DaLzngsUo8o0B9zbnKnXjaHUDPTUubBP43tk7pq8r0PqOz0m1SvTkaNar xbPoA2m+M/lLaMOvmrbDNjRRFk07ZEcHBLVU5zi++f9/EQRP7bFy0BktzBHn ZZHRZeTfDJmuaHmHYI/QA/3wSThnvw/a8fyl1gwqOihqNXUfDZ1VMm1ND0DP 2usGUsLQc2uX+fHxaFHFHjUnET31vIPL5KN1U/sjSSlodecQRZOBbtlRO510 HP1eWXDx3hb0XZNALiI2g1eIJuHUN+gNVxVxzLwt4OrG1kqtfyxYc2d82PQj 2t6uCTdWbQWX9rRZI2K5YD6jbvPb29C0OnFp+nZ0X+5u68lEtI1hXtbuRZ+q j1vOOoo+U6CzyJrQgqmBGEUzmpHcXtz/FVr92knLbDuaZAi0sHvQZ3flPhu5 jX73u/Row110CItX9OdPaK2T97N1D9Auqm/N2XPoX1gtnNIFtEJWXSh5jE4+ fsB89Snaz5jIuWVBL+5mF/5sRatUNOWiDS193clst6P/AduZAJ4= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesLabel->{None, None}, AxesOrigin->{0, 0}, Method->{}, PlotRange->{{-5, 30}, {0., 3.}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.717952420394546*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{ RowBox[{"z", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"3", "*", "x"}], "/;", RowBox[{"0", "<", "x", "<", "6"}]}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"z", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{ FractionBox["x", "3"], "+", "16"}], "/;", RowBox[{"6", "<", "x", "<", "24"}]}]}], "\n", RowBox[{ RowBox[{"z", "[", "x_", "]"}], ":=", RowBox[{"24", "/;", RowBox[{"24", "<", "x", "<", "\[Infinity]"}]}]}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"z", "[", "x", "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "5"}], ",", "30"}], "}"}]}], "]"}]}], "Input"], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJxF0Xs01PkbB/Ch2Kkmm+vMSELY0OD7nTGfSsy71k9p1ZakmySX6aaorZBf slaFSNFNkksX0iYifspGpXZccx23XLvqMmxZ0obf/H5/mM85n/Oc13PO5znP 83wMvfxdfJUZDEaY/P4vlu7M6VMpH7GfscrBv8xNU6RRrP9wr2qEaKZudlrW lMsiWy9/i7MPU0XrNX94uMWoSOTq07XqsUG+KFTn5xFjqkbk6Xvee2PtExEz JrfiR/du0Wvfzx9MMqUiv5iCvXpjAyIzcVruNK03ohTWgifMn5VwIPqmUdOR IVFLBqOtq2sGCq2DBBaUEjSc8mtKy7lwshzUX/eHKgqNyDolNUP81qvxIp7H Qq/ZSnNLIxM4/JRXrzlVHa8HWMWz4szgIotqbqjQRMirlY/tcnjovJMY9Viq iRUx4pUmj3jYGXjDNq9XE7P5oa2sRh5+ZZSnxH/VxKOwW/3twzzkaDC3rzbX AlOPpXdIZInvybEvNVFaOOdSvr+gxhJVR8K5Fcu0cafkR1Orj1ZY7xBfWeSq jQjxplydcSu8ZKYfvuGpjZvHFugfYVrjn9MPeyKDtPFv3uobYl1rmF9lZC3N 1IZBSFiJjb01oiShC598p4NtOl3vG45aw1E9ZFPpUx0MOl9ymKFNQTTTnhdU rwP/MzLDtlkU5psojVt16uBdO8avmFIwX3A8PeVvHXTvfFVE5lP4fmtCX6gx G5WRllZbNlFg7nK7L7Rmw7E2jGXmQ0H5ADdWZsvGI3ZD3yc/CoORKdYea9go vB549VgohZacm4F24Wykl5Vys9Mo1N3b4/R3LBuzWJrDgVkUKsqombcS2biw xrdxcR6F4pbCB3q5bMT2TolrKqNwt/fQqcZiNpjm7n4p1RSyP9h5xUjYCN+b 7bRDSiGNUabyrYuNYMaayaNvKFycerw57z0bg0uv9TwdoHBGa/mNXcNs+McN Pzg1QiFWf3rInEkcxDx6P7iEQePY3FrndjUOCtar/7VIicYROkE/QZeDbpnw o1CZRtAit4HlphxMPereZz2Jxs5VzxPu2XHgkZvRY6xCw3tjiu8+Jw4il1Z3 6KvScPfxIuZrObjT8amV8x2NlUFv2xL9OFCdal/PmkKDnzpoGJzEwW2vxkeD LBrf+lk5ZIQDhpbS1TItGrFxdlX5+VykHdwo9jGmkeUctz+9hIuipIKoFSY0 JFN69E5VcFFXqnFLaEpDOSJi965uLhjTKj8z58r7DapUM2LpYkuK7a+3LGh4 bd2wOs5bF/oSvUtDNA0h/4B0h8ZMXOR21UUuptEl/b1bP0AP8cXedrc8aLAv C/ffFc9GeO+G/S+TafDOFzR5ahui4/HnoFctNBbP7rIePWME4dFDHY0cPsZd A8KTpxvDXG07Lq7jY0l/87UvfiY44TISYBbPR1B5FfNdnyn6DgYqZdTxwWde sDu3Yi7y3BK3yFgCXBis3O6YZQbumGHxtKUCDBjENsQYW+Dw0fNB7GMC1OQa zzh5dB5WSHKUP5YKkBLuFGMy2RK67ws+5DBsoKvUPFYaYoWIpjlNy0U2mL4v OW3abmtsDBGcyA62wfFJ514oWVDgKdFpjCIbOPwZfHLtcwp+Sxoi9AZtIO05 LbCIprH0p3axmqUQWy8FfK105MNAUJsp8xPCKmqhWcUQH74t2/9zIUOIIe3K wIS7AmS4y36g3gjBaHK0urfNBmsvsX0TjAi63g31eOkIkXolI7XSnaAwdXe+ tEGIt9HGiz4lEayfu2kkUSrEvunlox2XCL7cXma/uVWI0bjdJeXJBPNL5khe dAqhcbZgSVoKwb2O1vaBPiHsU5Y5rbpC8EDXcdI0BsGZPD+37CyCsjP6LqJ5 BIuf5wfsLCLw0WOdV7YiqPLYQLvdI1C5OtL+hCJY1zP6efF9Ase8Rl9nQuD3 2jGQ+weBpC46eMMSggsDLYclpQSVasOpv6wnkE0ejTaVENRHPuvPiCBI4v3r Wq+U4JP5oq3XjxNc995h0NtMoFGdWX81miAnMTapp4VgjXr43bRTBE9VpKe7 2wgaEwUhSfI5/+oQh3Z2EjRnJarG5RMsOxm5ru21fH5n1aDYQgKXst/rW98Q cPr39Z2Q9735a+2K1rfyffGdqyLlfe0Tcx1a3hG03R87HV5FcNk+y1oqI3he 5T3r4EuCQVnllPohgm97ak/ul9cZMx6IqBsmmKVux/hF/m7qJi1G3RcCj7U6 L/wHCGb/6T707CtB6HC4657PBOajYXuf/SOvm9j/xE9eR8C/9qHmm3zftu5k 1wiBaEf5tppR+f92SDJ3yPPLUz72Vo8RMMJsdLePE6xtUveolkcDo/QTYuX5 YPz/zAfK1EZ9VBT2FIfs8WYqnJblutpTTeFeGU+wWUvhl+PxJavmKfxmxpfl Dg4Ku4eZHlyTrnBdv2uaF2PBhEcZyZ6dtxWec+emyGTPwgmfOHvtePls2wlL njVU9FcrPH5DwuuJXjTh4ILMEStbuwn/FiAdOp+scKz55MHxcYX/CxRYUhc= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesLabel->{None, None}, AxesOrigin->{0, 0}, Method->{}, PlotRange->{{-5, 30}, {0., 24.}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.7179524262641516`*^9}] }, Open ]] }, WindowSize->{1902, 912}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{32000, 32000}, PrintingOptions->{"Magnification"->1., "PaperOrientation"->"Portrait", "PaperSize"->{595.1999999999999, 841.98}}, Magnification->1.4000000953674316`, FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (2013\:5e742\:670813\ \:65e5)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[579, 22, 871, 25, 206, "Input"], Cell[1453, 49, 1687, 35, 381, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3177, 89, 674, 21, 146, "Input"], Cell[3854, 112, 2980, 57, 347, "Output"] }, Open ]] } ] *) (* End of internal cache information *)